

XZ axes | XD604.XZ8S/K

Piezo Nanopositioning Stages

Introduction

The XD604 large-load piezoelectric nanometer positioning platform has a carrying capacity of up to 80kg and can produce XZ two-dimensional motion with a single-axis stroke of 8µm/axis.

Characteristics >>

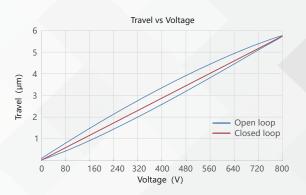
- X, Z motion
- 8 µm/axis travel
- Load capacity up to 80kg
- 0~1000V drive

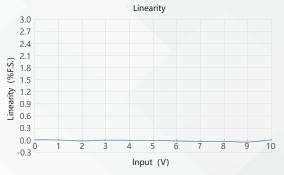
Applications >>

- Laser interference
- Nano-measurement
- Nano imprint
- Scanning microscope
- Quality assurance test
- · Micromachining / precision control
- Biotechnology
- Nanopositioning

Harbin Core Tomorrow Science & Technology Co., Ltd.

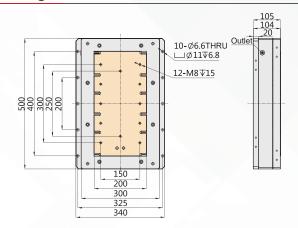
Technical Data >>


Туре	S-Closed loop K-Open loop	XD604.XZ8S	XD604.XZ8K	Units
Active axes		X, Z	X, Z	
Travel range in X(0~1000V)		8	8	μm±10%
Travel range in Z(0~1000V)		8	8	μm±10%
Sensor		SGS	-	
Resolution		0.5	0.1	nm
Linearity		0.19	0.19	%F.S.
Repeatability		0.13	0.13	%F.S.
Unloaded resonant frequency		560	560	Hz±20%
Resonant frequency@80kg load		340	340	Hz±20%
Resonant frequency@80kg load & 200nm travel		20	20	Hz±20%
Load step time		15	< 10	ms±20%
Load capacity		80	80	kg
El. capacitance		X0.44/Z1.33	X0.44/Z1.33	μF±20%
Operating temperature ^[1]		-40~+80	-40~+80	°C
Material		Steel, Al	Steel, Al	
Mass		63	63	kg±5%
Size(L×W×H)		500×340×105	500×340×105	mm
Cable length ^[2]		1.5	1.5	m±10mm
Connector ^[2]		-	-	


Note: Max driving voltage could be -20V~150V, 0~120V is recommended for long-term and high-reliable operation. Unless otherwise specified, the above parameters are measured at room temperature about 25° C.

- [1] Custom ultralow temperature and ultrahigh vacuum versions are available.
- [2] Custom cable length and connector is available.

Note: The parallelism of the moving platform is about $20\mu m$, and the roughness is about 1.6 to 3.2. Please contact the sales engineer for confirmation before purchase.


Curves >>

Disclaimer: The data here are typical, only for reference. Some variations will occur for different batch.

Drawing >>

Recommended Controllers >>

E01.D3 LCD, membrane button, up to 625mA RS-232/RS-422/USB interface Software secondary development

E70 Small size, 70mA/channel RS-232/RS-422/USB interface Software secondary development

