

# $\theta x \theta y$ axes | S38.T1S/K-C1

# Piezo Tip/Tilt Platform





The S38-C1 piezo tip tilt platform is a  $\theta x$ ,  $\theta y$  two-dimensional deflection piezo fast steering mirror. It is equipped with a lens mounting cap and is small in size and easy to integrate. It can be integrated into a cage structure with a right-angle adapter.

## Characteristics >>

- θx, θy tilt
- Tilt angle: 1.2mrad/axis
- · Optional closed loop sensor
- Optional right-angle adapter structure

## Applications >>

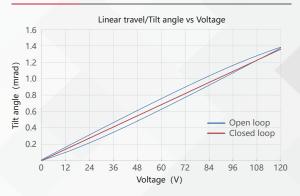
- Light path adjustment
- · Laser communication
- Light path stabilization
- Laser fast scanning
- Image processing and stabilization
- · Error correction for polygonal mirrors
- Optical switch
- Active and adaptive optics

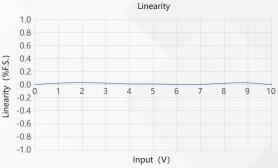


Harbin Core Tomorrow Science & Technology Co., Ltd.



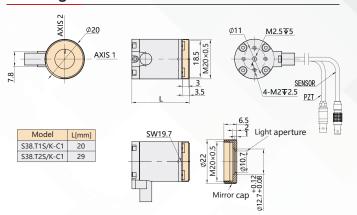
# Technical Data >>


| Type S - closed loop<br>K - open loop   | S38.T1S-C1                            | S38.T1K-C1     | Units    |
|-----------------------------------------|---------------------------------------|----------------|----------|
| Active axes                             | Өх, Өу                                | Өх, Өу         |          |
| Driving channels                        | 3                                     | 3              |          |
| Tilt angle (0~100V)                     | 1 or $\pm 0.5$ ( $\approx \pm 103$ ") |                | mrad±10% |
| Tilt angle (0~120V)                     | 1.2 or ±0.6( ≈ ±123")                 |                | mrad±10% |
| Integrated sensor                       | SGS                                   | -              |          |
| Resolution                              | 0.03 ( < 0.01")                       | 0.01 (< 0.01") | μrad     |
| Closed-loop linearity                   | 0.3                                   | -              | %F.S.    |
| Closed-loop repeatability               | 0.1                                   | -              | %F.S.    |
| Unloaded resonant frequency             | 7000                                  | 7000           | Hz±20%   |
| El. capacitance                         | 1.6/axis                              | 1.6/axis       | μF±20%   |
| Operating temperature <sup>[1]</sup>    | -20~80                                | -20~80         | °C       |
| Material                                | Steel, bronze                         | Steel, bronze  |          |
| Platform length L                       | 20                                    | 20             | mm±0.1   |
| Mass(with no cable)                     | 50                                    | 50             | g±5%     |
| Cable length <sup>[2]</sup>             | 1.5                                   | 1.5            | m±10mm   |
| Sensor/voltage connector <sup>[2]</sup> | -                                     | -              |          |


Note: Technical data are measured by CoreMorrow E00/E01 series piezo controller. Max driving voltage could be -20V~150V, 0~120V is recommended for long-term and high-reliable operation. Unless otherwise specified, the above parameters are measured at room temperature about 25° C.

- $\label{eq:custom} \ensuremath{\text{[1]}} \ensuremath{\text{Custom}} \ensuremath{\text{ultrahigh}} \ensuremath{\text{vacuum}} \ensuremath{\text{versions}} \ensuremath{\text{are available}}.$
- [2] Custom cable length and connector is available.

Note: The parallelism of the moving platform is about  $20\mu m$ , and the roughness is about 1.6 to 3.2. Please contact the sales engineer for confirmation before purchase.


## Curves >>





Disclaimer: The data here are typical, only for reference. Some variations will occur for different batch.

# Drawing >>



## Recommended Controllers >>



E01.D3 LCD, membrane button, up to 625mA RS-232/RS-422/USB interface Software secondary development



E70 Small size, ave current 70mA/channel RS-232/RS-422/USB interface Software secondary development

