

X axis | P66.X30S/K

Piezo Nanopositioning Stage

Introduction

P66.X30 is a piezo nanopositioning stage with X motion using direct-drive mechanism. It is nanopositioning system combining piezo and flexible hinges, which could reach millisecond response time, sub-nano accuracy, and optional highprecision sensors for closed-loop control. It is ideal for positioning applications such as optical path length correction in interference, sample positioning in microscopy or scanning applications, etc.

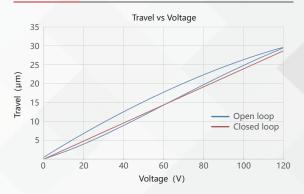
Characteristics >>

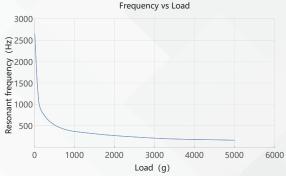
- Active axes X
- \bullet Travel range to $30\mu m$
- Max load to 8kg
- Fast response time
- · Open/closed loop

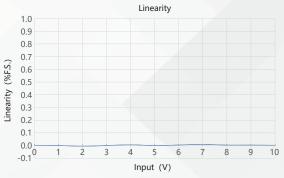
Applications >>

- Metering
- · Nanometer positioning
- · semiconductor technology
- Micro machining/precision control
- Interference / scanning
- CD disc test
- · Quality assurance testing

Technical Data >>

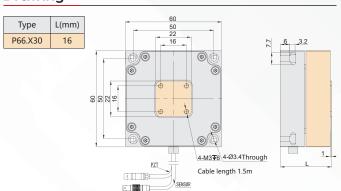

Type S-Closed loop K-Open loop	P66.X30S	P66.X30K	Units
Active axis	Χ	Χ	
Travel range(0~120V)	24	24	μm±10%
Travel range(0~150V)	30	30	μm±10%
Sensor	SGS	-	
Resolution	1	0.5	nm
Closed-loop linearity	0.1	-	%F.S.
Repeatability	0.05	-	%F.S.
Pitch/yaw/roll	<15	<15	μrad
Push/pull force capacity	120/15	120/15	N
Stiffness	4.4	4.4	N/µm±20%
Unloaded resonant frequency	5	5	kHz±20%
Unloaded step time	5	0.8	ms±20%
Closed-loop operating frequency (-3dB)	600 (unloaded)	600 (unloaded)	Hz±20%
Load capacity	8	8	kg
El. capacitance	3.6	3.6	μF±20%
Operating temperature ^[1]	-20~80	-20~80	°C
Material	Aluminum	Aluminum	
Size(L×W×H)	60×60×16	60×60×16	mm
Mass	120	120	g±5%
Cable length ^[2]	1.5	1.5	m±10mm
Sensor/voltage connector ^[2]	-	-	


Note: Max driving voltage could be -20V \sim 150V, 0 \sim 120V is recommended for long-term and high-reliable operation.Unless otherwise specified, the above parameters are measured at room temperature about 25° C.


- [1] Custom ultralow temperature and ultrahigh vacuum versions are available.
- [2] Custom cable length and connector is available.

Note: The parallelism of the moving platform is about $20\mu m$, and the roughness is about 1.6 to 3.2. Please contact the sales engineer for confirmation before purchase.

Curves >>



Disclaimer: The data here are typical, only for reference. Some variations will occur for different batch.

Drawing >>

Recommended Controllers >>

E01.D1 LCD, membrane button, up to 625mA RS-232/RS-422/USB interface Software secondary development

E53 Small size, 60mA RS-232/RS-422/USB interface Software secondary development

