

Piezo Nano Motion

- Piezo Z/Tip/Tilt/Rotation Stage -

Harbin Core Tomorrow Science & Technology Co.,Ltd.

Piezo Z/Tip/Tilt/Rotation Stage

Based on piezoelectric ceramics as the driving source, Piezo Z and Tip/Tilt/ Rotation Stages can generate θx, θy, θz or/ and XYZ motion.

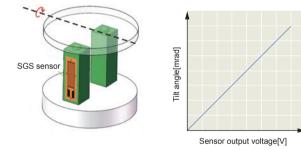
Piezo Z/Tip/Tilt/Rotation Stages

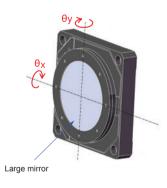
Piezo Z and Tip/Tilt/Rotation Stages are precisely angular and linear motion stages, drived by piezoelectric ceramic actuator. The internal flexible hinge parallel structure design ensures excellent deflection accuracy, high stability and fast response. It is very suitable for laser beam scanning and optical path adjustment such as laser beam combining.

Motion Directions: θx, θy, θz, X, Y, Z

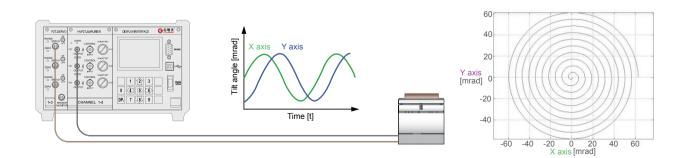
N50

P21/S20

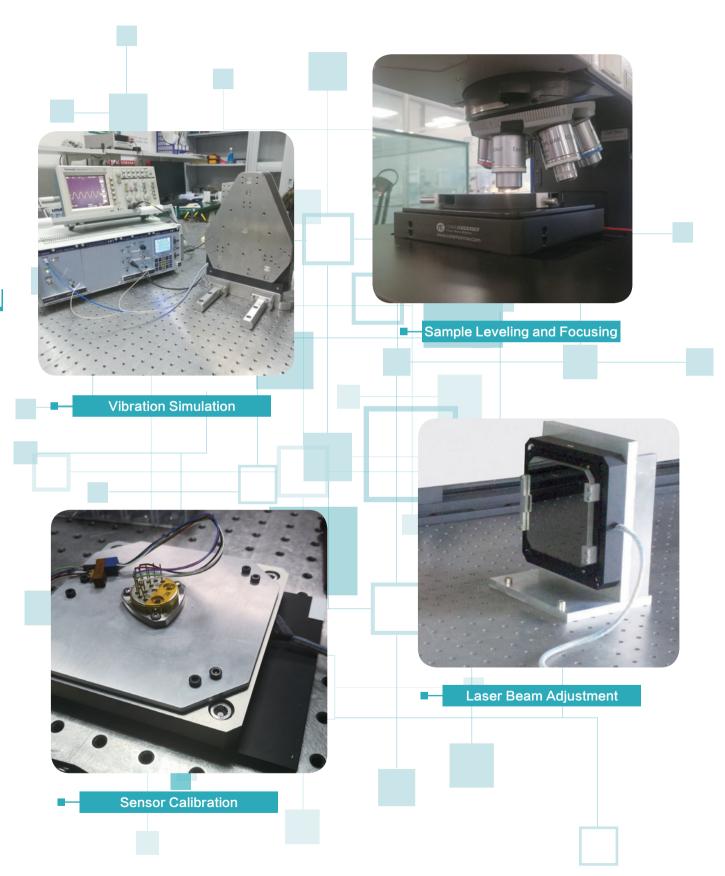




Optional Sensor for High Accuracy


Large Aperture, Large Load Capacity

Piezoelectric ceramic drive and high-stiffness structure make it can carry up to 125mm outer diameter lens.



Driving and Control

Applications

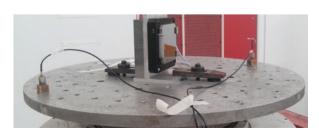
Typical Applications

- Imaging process
- Image stabilization

Optics

- Interlaced scanning, jitter
- Optical filter/switch
- Beam combiner
- Laser scanning

Product List


Laser beam tilt/stabilization

Туре	Active axes	Travel range	Resolution	Page
S20	θz	0.5mrad(≈ 100)	0.01µrad(<0.01)	4
S21	θz	7.5mrad(≈ 1500)	0.2µrad(≈ 0.04)	6
S50.U0C/K	θx	0.19mrad(≈ 39)	-	8
S50.U0C/K-D1	θx	0.5mrad(≈ 100)	0.01µrad(<0.01)	9
S50.UR0C/K	θx, θz	0.5mrad(≈ 100) /axis	0.01µrad(<0.01)	10
S50.UR1S/K	θx, θz	1.3mrad(≈ 268) /axis	0.03µrad(<0.01)	12
S51.ZT1S/K	Өх, Өу Z	±1.1mrad(≈ ±220 v/axis 100µm	0.05µrad(≈ 0.01) 4nm	13
S54	Өх, Өу	± 1 mrad($\approx \pm 200$) /axis	0.05µrad(≈ 0.01)	15
H60.XYZTR1	θx, θy θz X, Y Z	± 0.16 mrad($\approx \pm 30$) /axis ± 0.24 mrad($\approx \pm 50$) ± 6.5 µm/axis ± 3.2 µm	0.01µrad(<0.01) 0.02µrad(<0.01) 0.4nm 0.2nm	17
H60.XYZTR2	θx, θy θz X, Y Z	±0.32mrad(≈ ±66)/axis ±0.48mrad(≈ ±99) ±12.5µm/axis ±6.4µm	0.02µrad(<0.01) 0.03µrad(<0.01) 0.8nm 0.4nm	17
H60.XYZTR5	θx, θy θz X, Y Z	± 0.64 mrad($\approx \pm 130$)/axis ± 0.96 mrad($\approx \pm 198$) $\pm 25 \mu$ m/axis $\pm 12.8 \mu$ m	0.04µrad(<0.01) 0.06µrad(≈ 0.01) 1.6nm 0.8nm	17
H61	Өх, Өу, Өz X, Y, Z	1mrad(≈ 200)/axis 6µm/axis	0.01µrad(<0.01) 0.1nm	18
H62	θx, θy θz X, Y Z	±12.5mrad(≈ ±2578)/axis 1.6mrad(≈ 330) ±100µm/axis 200µm	0.25µrad(≈ 0.05) 0.01µrad(<0.01) 2nm 2nm	19
20060	Өх, Өу	± 1.25 mrad($\approx \pm 257$)/axis	0.05µrad(≈ 0.01)	20

Performance Test

Measuring angular range

Vibration test

S20 Piezo Rotation Stage

The S20 piezo rotation stage with a diameter of 20mm central aperture, features compact size, a rotation angle of 0.5mrad and closed-loop repeatability of 0.2% F.S.

Characteristics

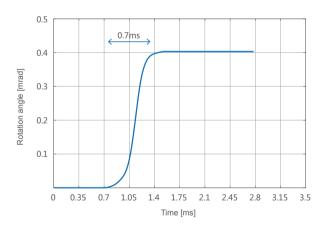
Rotation angle range to 0.5mrad
 Aperture diameter: Ø20mm

θz Rotation

Mini, Aperture, High Resolution & Reliability

S20 is a θz high-precision rotating platform, and its rotating axis is located in the center. The center aperture is suited for transmitted-light applications. The finite element analysis is used to optimize the microstructure to meet the dynamic and guiding accuracy.

The high-reliability piezoelectric ceramic is used as the driving component, and the flexible hinge mechanism features frictionless, high resolution and reliability. OEM custom is available. Large Load Capacity

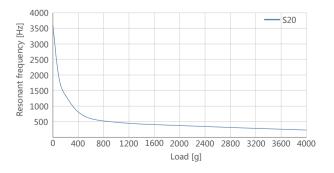

Fast response

Small size

S20 has a maximum rotation angle of 0.5mrad. The excellent hinge guiding mechanism design features a load capacity of up to 4kg and high stability. It is very suitable for applications like scientific research and industrial precision operation, optical path adjustment, etc.

Short Step Time

Closed loop for high accuracy

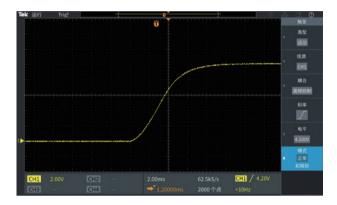


Recommended Controllers

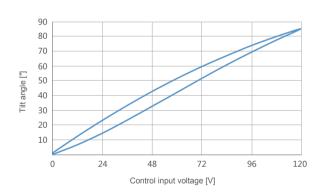
E01	E53	E52
		Alton the
1 channel Digital, analog Open/closed loop Ave. current 291mA	1 channel Digital, analog Open/closed loop Ave. current 60mA	1 channel Digital, analog Open/closed loop Ave. current 300mA

Note: Please see "Piezo Controller" for detailed information.

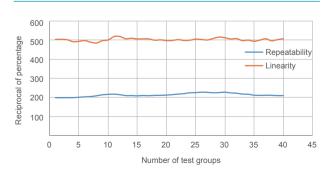
Frequency and Load Curve



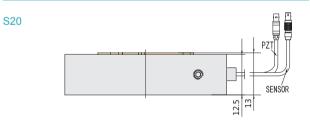
Typical Applications

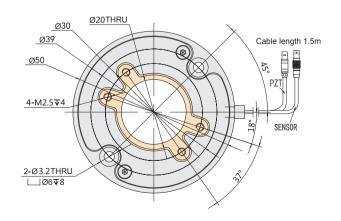

- Fiber alignment
- Micro-operation
- Sensor calibration
- Materials Science
- Image stabilization
 - Optical path

Step Time


The unloaded step time of S20.R0S to 100% rotation angle is about 8ms.

Open-Loop Curve


Positioning Accuracy



Technical Data

Туре	S - closed loop K - open loop	S20.R0S S20.R0K	Units
Active axes		θz	
Rotation ang	le(0~+120V)	0.4(≈80″)	mrad±20%
Rotation ang	le(0~+150V)	0.5(≈100″)	mrad±20%
Integrated se	nsor	SGS/-	
Resolution		0.02(<0.01") /0.01(<0.01")	µrad
Closed-loop I	linearity	0.5/-	%F.S.
Closed-loop	repeatability	0.2/-	%F.S.
Push/pull for	ce	50/10	Ν
Stiffness		5	N/µm±20%
Unloaded res	sonant frequency	3.5	kHz±20%
Unloaded ste	ep time	8/0.7	ms±20%
Unloaded	10% travel	200	
operating frequency	100% travel	30	Hz±20%
Load capacity		4	kg
El. capacitance		1.6	μF±20%
Material		Steel	
Mass		140	g±5%

Note: Above parameters are measured with the E00/E01 piezo controller. The maximum driving voltage can be -20V~150V; For high-reliability and long-term operation, the recommended driving voltage is 0~120V.

S21 Piezo Rotation Stage

S21 piezoelectric rotation stage is a θ z rotation stage with small size, a rotation angle of 7.5mrad and a load capacity of 0.1kg, which can drive the lens to make precise rotation motion.

Characteristics

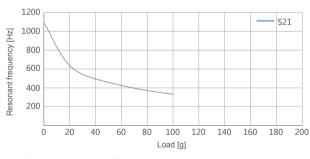
θz rotation

Rotation range to 7.5mrad
 Close

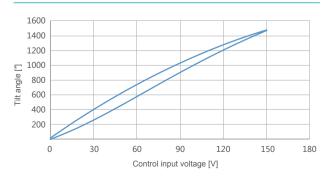
Closed loop for high accuracy

Fast response

Small size


Typical Applications

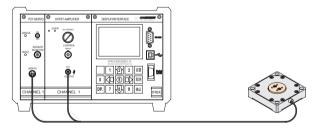
- · Optical path adjustment
- Interference/Metrology
- Beam scanning
- Sensor calibration


High Resolution and Accuracy

S21 rotation stage adopts the principle of mechanism amplification design. Piezoelectric ceramic is used as the driving component, and the stage body adopts a flexible hinge mechanism, which has no friction, and can achieve a resolution of 0.2 µrad. The closed-loop version with built-in SGS sensor can realize the positioning accuracy of micro-radians and plays a very important role in the precise adjustment of the optical path.

Frequency and Load Curve

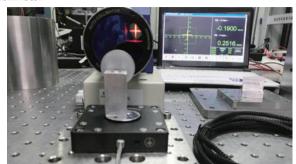
Open-Loop Curve


Application Example

S21 piezo rotation stage can be used with CoreMorrow any linear or tilting stage to form a multi-axis precision positioning operations.

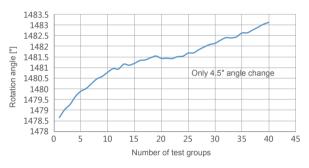
Driving and Control

S21 rotation stage needs a piezo controller with 1-channel voltage output. The P21 closed-loop version equipped with E01 series closed-loop controller realizes θz high-precision rotary positioning control.

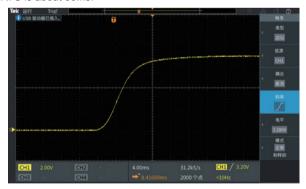


Recommended Controllers

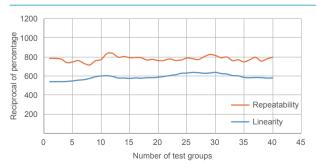
E01	E53	E52			
	Con Cont	Hart at			
1 channel Digital, analog Open/closed loop Ave. current 291mA	1 channel Digital, analog Open/closed loop Ave. current 60mA	1 channel Digital, analog Open/closed loop Ave. current 300mA			
Note: Please see "Piezo Controller" for detailed information.					


Tilt Angle Measuring

The tilt angle range of the S21.R7S is measured by a laser collimator.

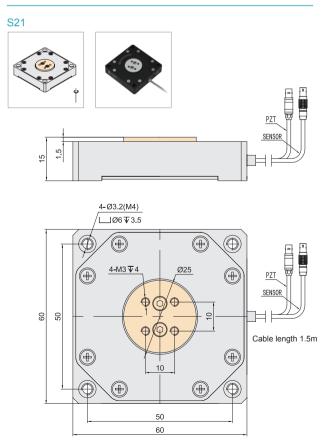

Angle Stability

40 groups are tested for the rotation angle range of S21.R7S, and the max rotation angle difference was about 4.5".



Step Time

Drived by E53.D piezo controller, the loaded step time of S21. R7S is about 30ms.


Positioning Accuracy

Technical Data

Туре	S - closed loop	S21.R7S	Units
Type	K - open loop	S21.R7K	Office
Active axes	6	θz	
Rotation ar	ngle(0~+120V)	6(≈1240″)	mrad±10%
Rotation ar	ngle(0~+150V)	7.5(≈1500″)	mrad±10%
Integrated	sensor	SGS/-	
Resolution		0.4(≈0.085″) /0.2(≈0.04″)	µrad
Closed-loo	p linearity	0.5/-	%F.S.
Closed-loo	p repeatability	0.2/-	%F.S.
Push/pull for	orce	10/5	Ν
Stiffness		1	N/µm±20%
Unloaded r	esonant frequency	1.1	kHz±20%
Unloaded s	step time	30/1.5	ms±20%
Unloaded	10% travel	50	
operating frequency	100% travel	15	Hz±20%
Load capad	city	0.1	kg
El. capacita	ance	1.8	μF±20%
Material		Aluminum	
Mass		105	g±5%

Note: Above parameters are measured with the E00/E01 piezo controller. The maximum driving voltage can be $-20V \sim 150V$; For high-reliability and long-term operation, the recommended driving voltage is $0 \sim 120V$.

S50.U0C/K Large-Load Piezo Tilt Stage

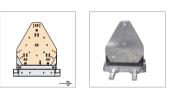
· 7kg load capacity

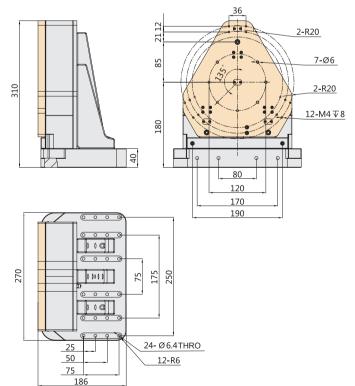
The S50.U0C/K piezo stage is an X deflection stage, which is specially designed for heavy load applications. It features 7kg load capacity, the deflection angle under 100V driving voltage of 0.19mrad, and the corresponding closed-loop step time of 17ms.

· Unloaded resonant frequency up to 1kHz

Characteristics

- θx deflection
- Technical Data


Туре	S50.U0C/K	Units
Active axis	θx	
Tilt angle@100V	0.19	mrad±10%
Integrated sensor	CAP/-	
Closed-loop linearity	1.25/-	%F.S.
Closed-loop repeatability	1/-	%F.S.
Unloaded resonant frequency	1000	Hz±20%
Resonant frequency @7kg load	210	Hz±20%
Closed/open-loop step time	17/16	ms±20%
Load capacity	7	kg±5%
El. capacitance	40	μF±20%


Note: The above parameters are measured using E00/ E01 piezo controllers. The max driving voltage can be -20~150V; For high-reliability and long-term operation, the recommended driving voltage is 0~120V.

Drawing

S50.U0C/K

· Capacitive closed-loop sensor

Piezo Z and Tip/Tilt Rotation Stages

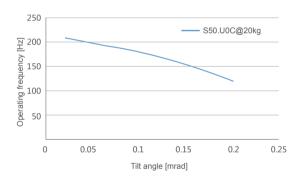
S50.U0C/K Piezo Tilt Stage

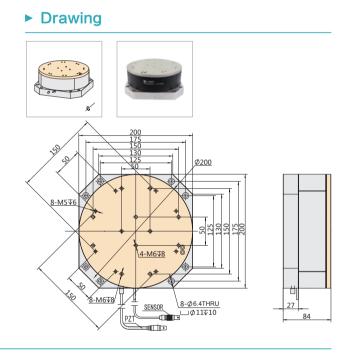
· Load to 60kg

S50.U0C/K is a 1-axis θx piezo stage, featuring load capacity of 60kg, and tilt angle of ±0.25mrad. It uses capacitive closed-loop sensor with resolution of up to 10nrad and can work at high frequencies at load of 20kg. It is very suitable for large-load motion experiments.

• Operating frequency to 210Hz@±0.01mrad

Characteristics


Tilt in θx


- Tilt angle to 0.5mrad@150V
- Applications

Interference/metering

- Beam scanning
- Heavy load motion experiment
 Vibration simulation system

► Tilt Angle vs Operating Frequency

Technical Data

		_					
Туре		S50.U0C/K-D1				Units	
Active axis			θx				
Tilt angle(0~120V)			0.4(*	≈80″)		mrad±10%	
Tilt angle(0~150V)			0.5(≈	100")		mrad±10%	
Integrated sensor	ntegrated sensor		CA	P/-			
Resolution			0.02/0.0	1(<0.01")		μrad	
Closed-loop linearity			0.3/-			%F.S.	
Closed-loop repeatab	oility		0.3/-			%F.S.	
Unloaded resonant fr	equency		7	50		Hz±20%	
Unloaded step time		30/15				ms±20%	
Tilt angle vs operating frequency	Angle	±0.1	±0.05	±0.02	±0.01	mrad±20%	
@20kg load			0~180	0~200	0~210	Hz±20%	
Load capacity		60				kg	
El. capacitance			30			μF±20%	
Material		Aluminum, Steel					
Cable length		1.5			m±10mm		

S50.UR0C/K Piezo Tilt/Rotation Stage

S50.UR0C/K is a 0x and 0z axes tilt/rotation stage, with super large load capacity of up to 40kg and deflection angle of ±0.25mrad. It can work in dynamics with a 20kg load. The products are mainly used in large load tilt/rotation motion experiments, such as vibration simulation experiments.

CAP sensor

S50 stage requires three-channel controller for drive control, and different power piezo controllers are used according to the required frequency. For example, for the operating frequency

of 100~200Hz, we recommend E00/E01 controller with E05

Characteristics

• θx, θz motion

θx, θz Motion

- Tilt angular range to ±0.25mrad · Load capacity to 40kg
- · High response

Typical Applications

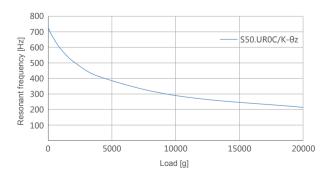
· Beam scanning

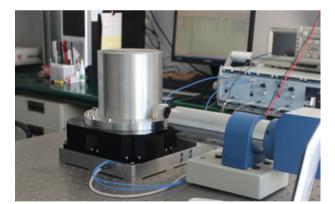
amplifier module.

- Interference/metering
- · Heavy load motion experiment
- · Vibration simulation system
- Performance Test

Standard

Custom is available

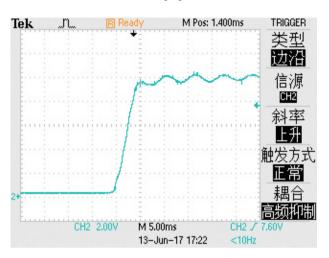

Large Load, High Accuracy & Frequency


S50 stage features a large load capacity specially designed for large load applications. It has capacitive closedloop amplitude correction function and can move precisely with a 40kg load. The maximum travel is ±0.25mrad/axis.

Using finite element analysis to optimize the structure, S50 has very high stiffness, high dynamics even under load, up to 500 Hz

A variety of sensor types are available, such as CAP, SGS, LVDT, and etc.

Frequency and Load Curve


Recommended Controllers

E01	E00	E70
		The same
3 channels Digital, analog Open/closed loop Ave. current 58mA	3 channels Digital, analog Open/closed loop Ave. current 291mA	3 channels Digital, analog Open/closed loop Ave. current 70mA

Note: Please see "Piezo Controller" for detailed information.

Loaded Step Time

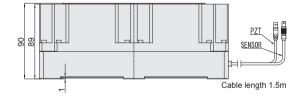
When S50.UR0C/K piezo tilt/rotation stage is loaded with a 20kg load, works in 100% travel, and step time is set to 5ms, the step curve is as shown in the following figure.

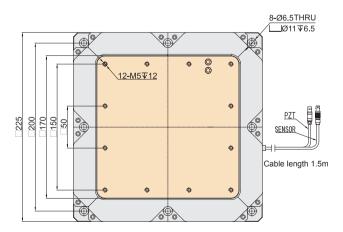
Technical Data

Туре	C - closed loop K - open loop	S50.UR0C S50.UR0K	Units
Active axe	S	θx, θz	
Tilt angle(0)~+120V)	0.4/axis(≈80″)	mrad±10%
Tilt angle(0)~+150V)	0.5/axis(≈100″)	mrad±10%
Integrated	sensor	CAP/-	
Resolution		0.02/0.01(<0.01")	µrad
Closed-loo	p linearity	0.3/-	%F.S.
Closed-loo	p repeatability	0.2/-	%F.S.
Unloaded I	resonant frequency	θx500/θz750	Hz±20%
Unloaded	step time	30/15	ms±20%
	10% travel	100	
operating frequency	100% travel	50	Hz±20%
Load capacity		40	kg
El. capacitance		30/axis	μF±20%
Material		Aluminum, Steel	
Mass		12.5	kg±5%

Note: Above parameters are measured with the E00/E01 piezo controller. The maximum driving voltage can be -20V~150V; For high-reliability and long-term operation, the recommended driving voltage is 0~120V.

Dynamic Performance


Loaded with 20kg, the relationship between tilt angles and operating frequency of S50.UR0C is showed in below figure.



With 20kg Load, Tilt Angle vs Frequency

Angle	±0.1	±0.05	±0.02	±0.01	mrad±20%
Frequency θz	0-100	0-300	0-400	0-500	Hz±20%
Frequency 0x	0-130	0-180	0-200	0-210	Hz±20%

S50.UR1S/K Piezo Tilt/Rotation Stage

► Characteristics

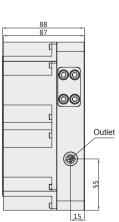
• θx deflection, θz rotation

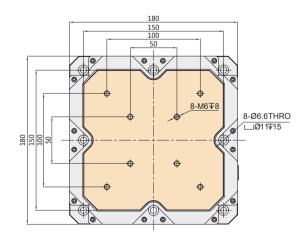
Optional closed-loop sensor

· Load up to 20kg

• Resolution up to 0.03µrad

Technical Data


Туре	S50.UR1S	S50.UR1K	Units
Active axis	θχ, θz	θx, θz	
Tilt angle(0~120V)	1/axis	1/axis	mrad±10%
Tilt angle(0~150V)	1.3/axis	1.3/axis	mrad±10%
Sensor	SGS	-	
Resolution	0.03	0.03	µrad
Linearity	0.2	-	%F.S.
Closed loop repeatability	0.07	-	%F.S.
Unloaded resonant frequency, θx/θz	726/604	726/604	Hz±20%
Resonant frequency@20kg load, 0x/0z	155/68	155/68	Hz±20%
Unloaded step time	50/20	50/20	ms±20%
Load capacity	20	20	kg
El. capacitance, θx/θz	36/44.3	36/44.3	μF±20%
Material	Steel, Aluminum	Steel, Aluminum	
Mass	9.5	9.5	kg±5%


Drawing

S50.UR1S/K

S51 Piezo Tip/Tilt and Z Stage

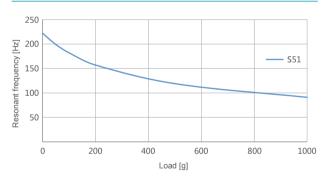
S51 is a piezoelectric deflection stage with 3 axes motion in θx , θy and Z, and with a 80×80mm central large aperture. It adopts frictionless flexible hinge structure design, featuring fast response speed and high precision of closed-loop positioning. The central large aperture makes it easy to integrate into microscopic and scanning optical system.

Characteristics

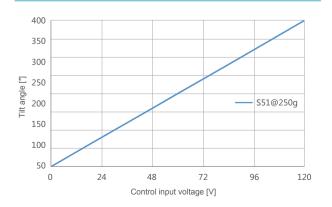
• θx, θy and Z motion

High closed-loop positioning accuracy

· Fast response


• Light aperture: 80×80mm

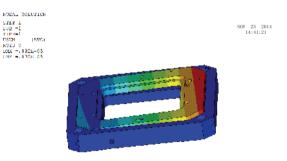
High Accuracy


S51 piezo deflection stage adopts a frictionless flexible hinge guiding structure and is optimized by finite element analysis, with high stiffness and guiding precision.

The built-in precision sensor can be used for position feedback to ensure excellent motion control accuracy. The linear motion resolution can reach sub-nanometer, the deflection resolution of sub-microradian, and the positioning stabilization time is in the order of milliseconds.

Frequency and Load Curve

Closed-loop Curve



Low-Profile Design

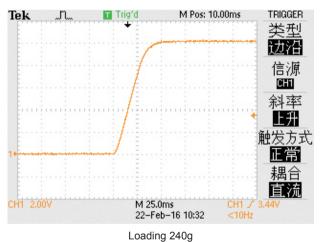
S51 piezo stage is specially designed for alignment, nanofocusing, metrology, etc, and features low-profile of only 20mm, easy to integrate.

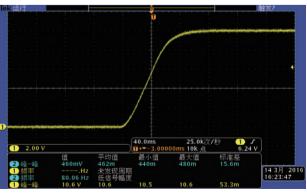
Simulation Analysis

S51 Finite element analysis techniques are used to design the highest stiffness in the direction of motion and to reduce angular misalignment. The hinge mechanism has no gaps and no friction offering high accuracy.

Recommended Controllers

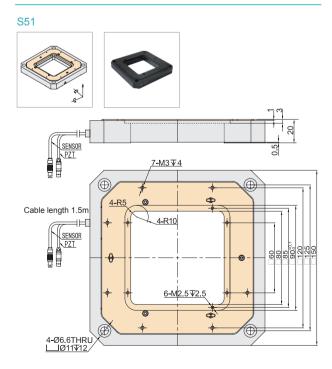
Typical Applications


- Scanning microscopy
- Interference/MeasuringLaser beam alignment
- Vibration simulation system
- Mask and wafer position adjustment
 Biotechnology


Tilt Range Measuring

Load Step Time

S51.ZT1S piezo stage controlled with E01.D3 piezo controller, its step time of loading 240g to 100% travel is about 50ms, and the step time of loading 500g load to 100% travel is about 100ms.



Loading 500g

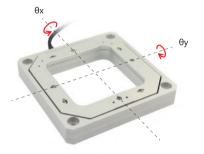
Technical Data

Туре	S - closed loop K - open loop	S51.ZT1S S51.ZT1K	Units
Active axis		θx, θy, Ζ	
Linear trave	el axes(0~+120V)	80	µm±10%
Linear trave	el axes(0~+150V)	100	µm±10%
Tilt angle(0	~+120V)	±0.9/axis(≈±190″)	mrad±10%
Tilt angle(0	~+150V)	±1.1/axis(≈±220")	mrad±10%
Integrated	sensor	SGS/-	
Resolution	in Z	7/4	nm
Resolution	(өх, өу)	0.25(≈0.05″) /0.05(≈0.01″)	µrad
Closed-loo	p linearity	0.1/-	%F.S.
Closed-loo	p repeatability	0.05/-	%F.S.
Push/pull for	orce	120/15	Ν
Stiffness in	Z	1.5	N/µm±20%
Unloaded r frequency	resonant	340	Hz±20%
Unloaded s	step time	30/4.5	ms±20%
Unloaded	10% travel	50	
operating frequency	100% travel	15	Hz±20%
Load capa	city	1(Optional 2.5 versions)	kg
El. capacita	ance	3.6/axis	μF±20%
Material		Aluminum, Steel	
Mass		820	g±5%

Note: Above parameters are measured with the E00/E01 piezo controller. The maximum driving voltage can be $-20V \sim 150V$; For high-reliability and long-term operation, the recommended driving voltage is $0 \sim 120V$.

S54 Piezo Tip/Tilt Stages

S54 is a two-axis piezoelectric deflection stage in θx , θy with a large aperture. It adopts a frictionless flexible hinge structure design with fast response speed and high closed-loop positioning accuracy. The 80×80mm aperture makes it easy to integrate into the systems of microscopy and scanning optical system.


Characteristics

• θx, θy tilt

• 80×80mm large aperture

Low profile

► θx, θy Tilt

· Open/closed loop

Custom Design

Custom is available according to your application.

High resolution

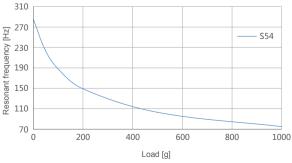
Closed loop with High Accuracy

The internal flexible hinge guiding mechanism is optimized by finite element analysis to minimize the angular offset with no friction.

S54 tip/tilt stage can achieve a maximum deflection range of ± 1 mrad with a resolution of up to 0.05µrad. The closed-loop sensor can be optionally configured to achieve a repeatability of 0.1% F.S.

Large Aperture

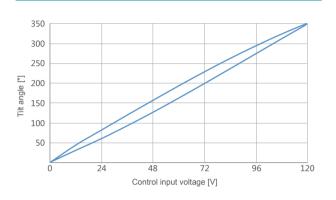
S54 piezoelectric stage has a large aperture of 80×80mm, which is very suitable for transmitted-light applications.


Recommended Controllers

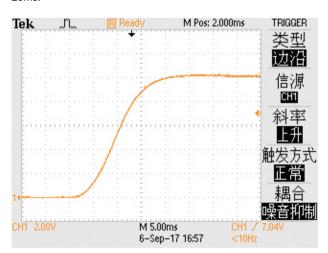
E01/E00	E53.B	E70
	108 108 5	p.
3 channels Digital, analog Open/closed loop Ave. current 291mA	3 channels Digital, analog Open/closed loop Ave. current 60mA	3 channels Digital, analog Open/closed loop Ave. current 70mA

Note: Please see "Piezo Controller" for detailed information.

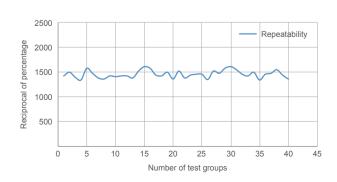
Frequency and Load Curve



Typical Applications

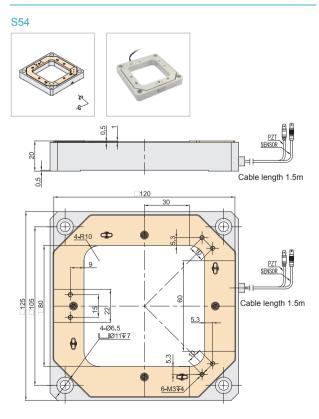

- Beam scanning
- Laser beam alignment
- Interference/Measuring
- Vibration simulation system
- Micro-operation
- Mask and wafer position adjustment

Open-Loop Curve



Step Time

S54.T2S unloaded step time to reach 100% travel is about 20ms.


Repeatability

Technical Data

Туре	S - closed loop K - open loop	S54.T2S S54.T2K	Units	
Active axe	s	θx, θy		
Tilt angle(0)~+120V)	±0.8/axis(≈±165")	mrad±10%	
Tilt angle(0)~+150V)	±1/axis(≈±200")	mrad±10%	
Integrated	sensor	SGS/-		
Tilt resolution		0.25(≈0.05″) /0.05(≈0.01″)	µrad	
Closed-loop linearity		0.2/-	%F.S.	
Closed-loop repeatability		0.1/-	%F.S.	
Push/pull force		40/8	Ν	
Stiffness		0.5	N/µm±20%	
Unloaded resonant frequency		X450/Y400	Hz±20%	
Unloaded	step time	20/3.5	ms±20%	
Unloaded	10% travel	50		
operating frequency	100% travel	15	Hz±20%	
Load capacity		1	kg	
El. capacitance		3.6/axis	μF±20%	
Material		Aluminum, Steel		
Mass		510 g±5%		

Note: Above parameters are measured with the E00/E01 piezo controller. The maximum driving voltage can be -20V~150V; For high-reliability and long-term operation, the recommended driving voltage is 0~120V.

H60 Piezo Hexapod

H60 Piezo Hexapod is a piezo stage with 6-axis motion of θx , θy , θz , X, Y, and Z. 6-axis movement in space is realized by the coordinated expansion and contraction of six piezoelectric actuators. The closed-loop model has high positioning accuracy. It is suited for applications such as microelectronics precision machining, test, etc.

Characteristics

• θx, θy, θz, X, Y, Z motion

Closed-loop control with high accuracy

Ultra small coupling

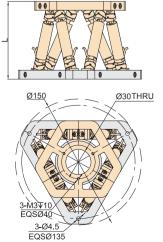
No accumulation of error

Technical Data

Туре	S - closed loop	H60.XYZTR1S	H60.XYZTR2S	H60.XYZTR5S	Units
туре	K - open loop	H60.XYZTR1K	H60.XYZTR2K	H60.XYZTR5K	Offits
Active axes			Х, Ү, Ζ, θх, θу, θz		
Linear travel i	n X, Y (0~120V)	±6.5 ±12.5 ±25 µm±20%			µm±20%
Linear travel i	n Z (0~120V)	±3.2 ±6.4 ±12.8		µm±20%	
Tilt angle in θ	х, θy(0~120V)	±0.16(≈±30″)	±0.32(≈±66″)	±0.64(≈±130″)	mrad±20%
Tilt angle in θ	z(0~120V)	±0.24(≈±50″)	±0.48(≈±99″)	±0.96(≈±198″)	mrad±20%
Tilt resolution	(өх, өу)	0.02(<0.01") /0.01(<0.01")	0.04(<0.01") /0.02(<0.01")	0.08(≈0.01") /0.04(<0.01")	µrad
Tilt resolution	, θz	0.04(<0.01") /0.02(<0.01")	0.06(≈0.01") /0.03(<0.01")	0.12(≈0.02") /0.06(≈0.01")	µrad
Resolution in	Х, Ү	0.8/0.4 1.6/0.8 3.2/1.6		nm	
Resolution in	Z	0.4/0.2 0.8/0.4 1.6/0.8 ni		nm	
Stiffness		50	58	66	N/µm±20%
Closed-loop li	nearity	0.25/-	0.25/-	0.25/-	%F.S.
Closed-loop r	epeatability	0.1/- 0.1/-		0.1/-	%F.S.
Unloaded res	onant frequency	1 kHz±2		kHz±20%	
Structure		Hexapods			
Driving source	e	Piezo actuators			
Load capacity	/	5 kg		kg	
Mass		1000 1150 1300		g±5%	

Drawing

H60



 Type
 L

 H60.XYZTR1
 57

 H60.XYZTR2
 67.5

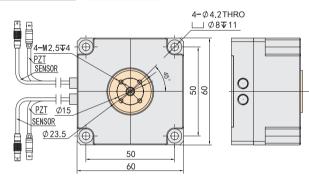
 H60.XYZTR2
 88

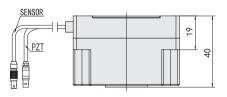
Recommended Controllers

H61 6-Axis Motion Piezo Stage

Characteristics

- Motion in X, Y, Z, θx , θy , θz
- Linear travel to 6µm@150V
- Deflection travel to 1mrad@150V
- Load capacity to 500g


Technical Data


Туре	S - closed loop K - open loop	H61.XYZTR1S H61.XYZTR1K	Units	
Active axis		Χ, Υ, Ζ, θx, θy, θz		
Motion & I	Position			
X, Y, Z tra (0~+150V	-	6/axis	µm±10%	
θx, θy, θz (0~+150V	deflection angle)	1/axis	mrad±10%	
Integrated	sensor	SGS/-		
Closed/op resolution	en-loop angular	0.15/0.01	µrad	
Closed/open-loop linear resolution		1.5/0.1	nm	
Closed-loop linearity		0.25/-	%F.S.	
Closed-loop repeatability		0.2/-	%F.S.	
Mechanica	Mechanical Property			
Unloaded resonant frequency		X2330/Y895/Z1425/ 0x3485/0y5620/0z2300	Hz±20%	
Unloaded closed-loop step time		25	ms±20%	
Load capacity		500	g	
Drive Perf	ormance			
El. capacitance, XYZ		1.8	µF/axis±20%	
El. capacitance, θx, θy, θz		3.6	µF/axis±20%	
Others				
Material		Steel, Aluminum		
Mass		440(Not include cable)	g±5%	
Cable len	gth	1.5	m±10mm	
Sensing/voltage Connector		DB15-HD(Needle)		

Drawing

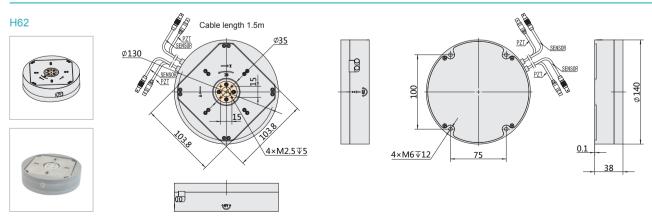
H61

E51.D7S Piezo Controller

Front panel

Rear panel

H62 6-Axis Motion Piezo Nanopositioning Stage



- Motion in X, Y, Z, θx, θy, θz
- Optional closed-loop feedback sensor
- feedback sensor Load capacity up to 200g
- Low profile

Technical Data

Mass		960(Not include cable)	960(Not include cable)	g±5%	
Material		Steel, Aluminum	Steel, Aluminum		
El. capacitance		XYθxθy: 14.4 Ζ: 28.8 θz: 3.6	XYθxθy: 14.4 Ζ: 28.8 θz: 3.6	µF/axis±20%	
Load capacity		0.2	0.2	kg±5%	
Unloaded resonant frequency		X140/Y150/Z200 θx270/θy280/θz110	X140/Y150/Z200 θx270/θy280/θz110	Hz±20%	
Closed-loop repe	eatability	0.2	-	%F.S.	
Closed-loop linea	arity	0.5	-	%F.S.	
θxθyθz resolution	n	θxθy: 0.9, θz: 0.06	θxθy: 0.25, θz: 0.01	µrad	
XYZ resolution		7	2	nm	
Integrated sensor		SGS	-		
θxθyθz nominal travel range (0~150V)		θxθy: ±12.5, θz: 1.6	θxθy: ±12.5, θz: 1.6	mrad±20%	
XYZ nominal travel range (0~150V)		XY: ±100, Z: 200	XY: ±100, Z: 200	µm±20%	
Active axis		Χ, Υ, Ζ, θx, θy, θz	Χ, Υ, Ζ, θx, θy, θz	, θx, θy, θz	
Туре	S - closed loop K - open loop	H62.XYZTR25S	H62.XYZTR25K	Units	

Note: The above parameters are measured using E00/E01 piezo controllers. The max driving voltage can be -20~150V; For high-reliability and long-term operation, the recommended driving voltage is 0~120V.

20060 Piezo Tip/Tilt Stage (Custom Version)

Travel up to 2.5mrad

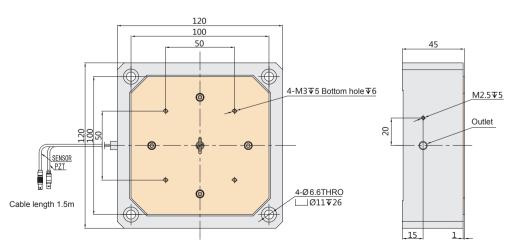
► Characteristics

• θx,θy deflection

Load capacity up to 5kg

Resolution up to 50nrad

Technical Data


Туре	20060	Units
Active axes	θх, θу	
Travel range(0~120V)	±1	mrad±20%
Travel range(-20~150V)	±1.25	mrad±20%
Integrated sensor	SGS	
Closed/open-loop resolution	0.25/0.05	μrad
Linearity	0.2/-	%F.S.
Repeatability	0.1/-	%F.S.
Unloaded resonant frequency	200	Hz±20%
Push/pull capacity	100/20	N±20%
El. capacitance	14.4/axis	μF±20%
Material	Steel, Aluminum	
Load capacity	5	kg±5%

Drawing

20060

Challenge the Limits of Nano Motion and Control Technology...

Harbin Core Tomorrow Science & Technology Co., Ltd. Tel:+86-451-86268790 +86-18944636468 Fax:0451-86267847 Postcode:150086 Email:info@coremorrow.com Web:www.coremorrow.com Address: Building I2, No.191 Xuefu Road, Nangang District, Harbin

Wechat

СТО