

Piezo Nano Motion

- Piezo Objective Scanner Series -

Harbin Core Tomorrow Science & Technology Co.,Ltd.

Piezo Objective Scanner Series

Based on piezoelectric actuators as driving sources, piezo objective scanner is mainly used for driving objective lens to make nanostepping motion in microscope or laser processing system.

Piezo Objective Scanner

Piezo objective scanner is specially designed for focusing and microscopy of objective lens. It is designed with a frictionless flexible hinge parallel guide mechanism design, and has ultra-high focus stability. The piezo objective scanner can be integrated into the microscope inspection/measurement or the observation device to improve accuracy, and can be used in conjunction with a variety of high-resolution microscopes.

Highlights

High Dynamics - P72

The low-profile objective positioner adopts the parallelogram design principle, high rigidity, and can move at high speed with a load of 200g.

Long Travel - P73

This scanner features long travel and high precision, and its travel can reach 1000 $\mu m.$

Large Load Capacity - P76

This large-load piezo objective scanner features large load capacity, fast response, and excellent linearity of Z-axis motion. It can be loaded with 500g load at high frequency.

Adapters Compatible

A variety of thread sizes are available, and can be configured with different brands of objective lenses, as well as threaded adapters for transfer.

Driving and Control

Adjustable Response Time

With different controllers and loads, the response time can be adjusted.

Closed-Loop Curve

Applications

- 2 -

Applications

- Adjustment focus
- Semiconductor inspection

Image processingLaser processing

- Confocal microscope
- Interference /metrology

Product List

Туре	Туре	Axes	Travel[µm]	Resolution[nm]	Resonant frequency[kHz]	Load capacity[kg]	Page
High dynamics	P72.Z100	Z	100	2.5	0.35	0.2	4
Long travel	P73.Z200	Z	200	5	0.21	0.2	6
Long travel	P73.Z500	Z	500	7	0.17	0.4	6
Long travel	P73.Z1000	Z	1000	10	0.11	0.2	6
Lager load	P76.Z50	Z	75	2.5	1.8	0.5	8
Lager load	P76.Z50S/KA	Z	50	2.5	0.8	0.5	8
Lager load	P76.Z100	Z	100	2.5	0.8	0.5	8
Lager load	P76.Z200	Z	200	5	0.9	0.5	8
Lager load	XD701	Z	200	7	0.33	1.5	10
Common	XP-721	Z	100	3	0.5	0.2	11
Inversion	20091	Z	50	-	1.4	0.2	13

Nanostructure Scan Measurement

Optical Inspection–Wafer Inspection

Microscan Imaging

Sample Scan Imaging

P72 Piezo Objective Scanner

P72 piezoelectric objective scanner is a Z-axis motion piezo positioner specially designed for objective lens focusing microscopy. It adopts a frictionless flexible hinge parallel guiding mechanism, with ultra-high focusing stability. The objective positioner is loaded with a microscopic detection/measurement or observation device to improve accuracy.

Characteristics

Travel to 100µm

· Load capacity to 0.2kg

• Millisecond response time

· Closed loop for high repeatability

- 3D imaging
- Surface structure analysis

Typical Applications

- Biotechnology
- Interference/metering · Confocal microscope
- Semiconductor test

Small Size, High Dynamics

P72 Piezo Objective Scanner is very compact. Its body uses a flexible hinge mechanism, which is frictionless and has a very high resolution and it can carry 200g load for high-speed precision motion, it has been widely used in optical scanning, confocal microscopy and other fields.

Frequency and Load Curve

Positioning Accuracy

Adapter Compatible

P72 objective positioner is connected to the objective lens through an adapter to guickly make the objective lens in the desired position. A variety of thread adapters are available, such as M27×0.75, M26×0.75, M26×1/36", M25×0.75, W0.8×1/36", etc., and custom is available.

Closed–Loop Step Time

Step time of 30ms at loading 200g to 100% travel.

Recommended Controllers

E00/E01	E52	E53	
	115.15 ··· 7-1		
1 channel Digital, analog Open/closed loop Ave. current: 291mA	1 channel Digital, analog Open/closed loop Ave. current: 300mA	1 channel Digital, analog Open/closed loop Ave. current: 60mA	
Note: Please see "Piezo Controller" for detailed information.			

Δ

Open/Closed Loop Curve

Technical Data

Application Example

P72 piezoelectric objective scanner can be used for automatic cell microscopy, cold atom microscopy and so on.

Туре	S-Closed loop K-Open loop	P72.Z100S P72.Z100K		Units
Active axes		Z	Z	
Travel range(0~120	V)	80	80	μm±10%
Travel range(0~150	V)	100	100	μm±10%
Integrated sensor		SGS	-	
Resolution		5	2.5	nm
Linearity		0.1	-	%F.S.
Repeatability		0.05	0.05 -	
Push/pull force		110/15	110/15	Ν
Stiffness		1.4	1.4	N/µm±20%
Unloaded resonant frequency		350	350	Hz±20%
Unloaded step time		10	3	ms±20%
Unloaded	10% travel	50	50	11-1000/
frequency	100% travel	15	15	HZ±20%
Load capacity		0.2	0.2	kg
El. capacitance		3.6	3.6	μF±20%
Material		Steel	Steel	
Mass		150	150	g±5%

Note: Above parameters are measured with the E00/E01 piezo controller. The maximum driving voltage can be -20V~150V; For high-reliability and long-term operation, the recommended driving voltage is 0~120V.

► Drawing

P72.Z100S/K

M(Type)	
W0.8×1/36"	
M25×0.75	
M26×1/36"	
M26×0.75	
M27×0.75	

P73 Piezo Objective Scanner

P73 piezo objective scanner features a long travel of 200µm, 500µm or 1000µm in Z direction. It also adopts flexible hinge mechanism, with no friction, good linearity and high positioning accuracy. P73 is widely used in long-travel scanning of microscopic imaging, two-photon microscopy and other fields.

Characteristics

- Optional 200µm, 500µm or 1000µm travel
- · Millisecond response time
- · Closed loop for high repeatability

Open/Closed-Loop Curves

Adapters Compatible

P73 objective positioner is connected to the objective lens through an adapter to quickly make the objective lens in the desired position. Various adapters are available, such as $M27 \times 0.75$, $M26 \times 0.75$, $M26 \times 1/36$ ", $M25 \times 0.75$, $W0.8 \times 1/36$ ", etc.

Typical Applications

• 3D imaging

- Interference/metering
- Semiconductor test
- Surface structure analysis
- Confocal microscope

Biotechnology

Frequency vs Load Curve

Closed–Loop Step Time

The step time loading 150g is about 30ms to reach 100% travel.

Surface Analysis

Recommended Controllers

E53	XE-650
The State of the State	
1 channel	1 channel
Digital, analog	I/O, analog
Open/closed loop	Open/closed loop
Ave. current: 60mA	Ave. current: 50mA
	E53 Line of the second

Note: Please see "Piezo Controller" for detailed information.

Drawings

19.8

40

46

Application Example

P73.Z1000

Fluorescence Imaging

Technical Data

Туре	S-Closed loop K-Open loop	P73.Z200S	P73.Z200K	P73.Z500S	P73.Z500K	P73.Z1000S	P73.Z1000K	Units
Active axe	S	Z	Z	Z	Z	Z	Z	
Travel rang	ge(0~120V)	160	160	400	400	800	800	μm±10%
Travel rang	ge(0~150V)	200	200	500	500	1000	1000	μm±10%
Integrated	sensor	SGS	-	SGS	-	SGS	-	
Resolution		11	5	18	7	36	10	nm
Linearity		0.1	-	0.1	-	0.5	-	%F.S.
Repeatabil	lity	0.05	-	0.05	-	0.3	-	%F.S.
Push/pull f	orce	80/10	80/10	80/10	80/10	20/5	20/5	Ν
Stiffness		0.25	0.25	0.2	0.2	0.02	0.02	N/µm±20%
Unloaded i	resonant frequency	210	210	170	170	110	110	Hz±20%
Unloaded :	step time	20/10	20/10	20/10	20/10	50/25	50/25	ms±20%
Unloaded	10% travel	40	40	40	40	-	-	
operating frequency	100% travel	10	10	10	10	-	-	Hz±20%
Load capa	city	0.2	0.2	0.4	0.4	0.2	0.2	kg
El. capacita	ance	7.2	7.2	14	14	43.2	43.2	μF±20%
Material		Steel, Al	Steel, Al					
Mass		360	360	450	450	786	786	g±5%

Note: Above parameters are measured with the E00/E01 piezo controller. The maximum driving voltage can be -20V~150V; For high-reliability and long-term operation use, the recommended driving voltage is 0~120V.

P76 Piezo Objective Scanner

P76 series piezoelectric objective scanner features a large load capacity up to 500g, Z-axis linear motion range up to 200µm, adopting flexible hinge mechanism, no friction, good linearity, high closed-loop positioning accuracy.

Characteristics

Millisecond response
 Closed loop for high repeatability

• Excellent focusing stability

• Designed for objective positioning

Large Load Capacity, High Frequency and Resolution

P76 Piezo objective scanner is designed for high-load, large-aperture objectives to achieve the fastest step times in high-resolution microscopy applications. Its extremely rugged design provides very fast settling times and scanning frequency, even when carrying a few hundred grams of objective. The rotationally symmetric alignment of multiple piezoelectric actuators and the optimized design of the flexure and lever elements give it a high stiffness while ensuring excellent guiding accuracy and dynamics.

P76 Piezo Objective Scanner has a maximum load of 500g. It is suited for multiphoton microscopy and confocal microscopy applications. P76 Piezo Objective Positioner can be used to match a variety of standard lenses from such as Zeiss, Nikon, Olympus, and Leica. It can also be used in conjunction with a manual adjustment stage via an adapter.

910 820 P76.Z100 Resonant frequency [Hz] 730 640 550 460 370 280 190 100 0 100 200 300 400 500 Load [g]

Frequency vs Load Curve

Typical Applications

- 3D imaging
- Auto focusing system
- Wafer cutting
- Interference/meteringConfocal microscope
- Semiconductor test

Thread Adapter for Easy Integration

P76 objective positioner is connected to the objective through an adapter. A variety of thread adapters are available, such as M27×0.75, M26×0.75, M26×1/36", M25×0.75, W0.8×1/36", etc., and custom is available

Open/Closed-Loop Curve(@500g load) ¹²⁰

Recommended Controllers

E00/E01	E52	E53	
	110-0	THE STORE	
1 channel Digital, analog Open/closed loop Ave. current: 291mA	1 channel Digital, analog Open/closed loop Ave. current: 300mA	1 channel Digital, analog Open/closed loop Ave. current: 60mA	
Note: Please see "Piezo Controller" for detailed information.			

8 -

Application Examples

Wafer Cutting

Material Analysis

Technical Data

Type	S-Closed loop	P76.Z50S	P76.Z100S	P76.Z50SA	P76.Z200S	Units
211-2	K-Open loop	P76.Z50K	P76.Z100K	P76.Z50KA	P76.Z200K	
Active axes		Z	Z	Z	Z	
Travel range(0~12	0V)	60	80	40	160	μm±10%
Travel range(0~15	0V)	75	100	50	200	μm±10%
Integrated sensor		SGS/-	SGS/-	SGS/-	SGS/-	
Resolution		15/2.5	5/2.5	5/2.5	10/5	nm
Linearity		0.1/-	0.05/-	0.05/-	0.1/-	%F.S.
Repeatability		0.05/-	0.02/-	0.02/-	0.04/-	%F.S.
Push/pull force		180/16	70/10	35/10	150/10	Ν
Stiffness		3	0.8	0.8	0.9	N/µm±20%
Unloaded resonant frequency		1800	800	800	900	Hz±20%
Unloaded step time		1.6/1	5/2	5/2	10/4	ms±20%
Load capacity		0.5	0.5	0.5	0.5	kg
El. capacitance		7.2	7.2	3.2	14.4	μF±20%
Material		Aluminum, Steel	Aluminum, Steel	Aluminum, Steel	Aluminum, Steel	
Mass		550	520	510	800	g±5%

Note: Above parameters are measured with the E00/E01 piezo controller. The maximum driving voltage can be -20V~150V; For high-reliability and long-term operation, the recommended driving voltage is 0~120V.

Drawings

P76.Z50/P76.Z100

M(Type)	N(Type)	D
M38×0.75	M38×0.75	Ø27
M32×0.75	M32×0.75	Ø27
M27×0.75	M27×0.75	Ø22
M26×0.75	M26×0.75	Ø21
M26×1/36"	M26×1/36"	Ø21
M25×0.75	M25×0.75	Ø20
W08×1/36"	W08×1/36"	Ø15

P76.Z200

M(Type) M27×0.75 M26×0.75 M26×1/36" M25×0.75 W0.8×1/36"

XD701 Piezo Objective Scanner(Custom Version)

XD701-D1

The XD701 piezoelectric objective scanner is specially designed for the use of multi-head objectives. It reserves a variety of mounting holes for easy replacement between different objectives. XD701 has two sizes for choice.

Characteristics

•	Travel up to 200µm	 Aperture: ФЗ0mm 	 Load capacity to 1.5kg 	 Optional closed-loop 	sensor

Technical Data

Туре	XD701	Units
Travel range(0~+120V)	160	μm±20%
Travel range(0~+150V)	200	μm±20%
Integrated sensor	SGS/-	
Aperture dia.	Ф30	mm±0.05
Closed-loop Resolution	7	nm
Linearity	0.05	%F.S.
Repeatability	0.01	%F.S.
Unloaded resonant frequency	330	Hz±20%
Load capacity	1.5	kg
El.capacitance	10.8	μF±20%

Drawing

XD701-D1

XD701-D2

XP-721 Piezo Objective Scanner

XP-721 is a small-volume piezo objective positioner with a separate thread adapter design that can be used with a variety of microscopes.

Characteristics

Z travel to 100µm

· Load capacity to 200g

Motion in Z

Quick Installation, High Stability

XP-721 piezo objective scanner is compact and cost-effective, and can be matched with many types of microscope objectives on the market.

The product is mounted between the lens mount and the objective lens via a threaded adapter. The objective scanner body is threaded onto the lens turret and the objective lens is attached to the scanner. This design eliminates the need to remove the other components when removing the objective lens.

Frequency vs Load Curve

- · Millisecond response
- · Closed loop for high repeatability

Typical Applications

- 3D imaging
- Surface structure analysis
- Biotechnology
- Interference/metering
- · Confocal microscopy
- · Semiconductor testing

Thread Adapter for Easy Integration

XP-721 objective positioner is connected to the objective lens through an adapter to quickly make the objective lens in the desired position. A variety of thread adapters are available, such as M27×0.75, M26×0.75, M26×1/36", M25×0.75, W0.8×1/36", etc., custom is available.

Application Example

XP-721 piezo objective scanner is mounted in an inverted optical microscope.

Recommended Controllers

E00/E01	E53	XE-650
	THE E DEST	9 H
1 channel Digital, analog Open/closed loop Ave. current: 291mA	1 channel Digital, analog Open/closed loop Ave. current: 60mA	1 channel I/O, analog Open/closed loop Ave. current: 50mA

Note: Please see "Piezo Controller" for detailed information.

90 80 70 XP-721.S Displacement [µm] 60 XP-721.K 50 40 30 20 10 0 24 48 72 96 120 Control input voltage [V]

Open-Loop Curve

Application Example

XP-721 piezo objective scanner is integrated into sample microscopy.

Technical Data

Туре	S-Closed loop K-Open loop	XP-721.S	XP-721.K	Units
Active axes		Z	Z	
Travel range(0~120V)		80	80	μm±10%
Travel range(0~150V)		100	100	μm±10%
Integrated sensor		SGS	-	
Resolution		10	3	nm
Linearity		0.2	-	%F.S.
Repeatability		0.1	-	%F.S.
Push/pull force		30/10	30/10	Ν
Stiffness		0.3	0.3	N/µm±20%
Unloaded resonant frequency		500	500	Hz±20%
Unloaded step time		10/2	10/2	ms±20%
Unloaded operating frequency	10% travel	60	60	Hz±20%
	100% travel	20	20	
Load capacity		0.2	0.2	kg
El. capacitance		3.6	3.6	μF±20%
Material		Aluminum	Aluminum	
Mass		250	250	g±5%

Note: Above parameters are measured with the E00/E01 piezo controller. The maximum driving voltage can be -20V~150V; For high-reliability and long-term operation, the recommended driving voltage is 0~120V.

Drawing

M (Model)	D
M26×0.75	Ø23
M26×1/36"	Ø23
M27×0.75	Ø24
M25×0.75	Ø22
W0.8×1/36"	Ø17

20091 Inverted Piezo Objective Scanner

This customized piezo objective scanner is dedicated to carrying an inverted objective lens, and is suitable for structures and equipment where the sample is located above the objective lens. It has a load capacity of 200g and a stroke of 50µm.

Technical Data

Туре	20091	Units
Active axes	Z	
Travel range(0~120V)	40	μm±20%
Travel range(0~150V)	50	μm±20%
Sensor	SGS	
Unloaded resonant frequency	1400	Hz±20%
Resonant frequency @120g load	600	Hz±20%
El. capacitance	7.2	μF±20%
Load capacity	200	g±5%
Material	Aluminium	

Drawing

Cable length 1.5m

Installation

tool.

Challenge the Limits of Nano Motion and Control Technology...

Harbin Core Tomorrow Science & Technology Co., Ltd. Tel:+86-451-86268790 +86-18944636468 Fax:0451-86267847 Postcode:150086 Email:info@coremorrow.com Web:www.coremorrow.com Address:Building I2, No.191 Xuefu Road, Nangang District, Harbin

Wechat

СТО