

Piezo Nano Motion

- Amplified Piezo Actuators -

Harbin Core Tomorrow Science & Technology Co.,Ltd.

Amplified Piezo Actuators

Applications

- Optics: probe scanning, optical lens positioning, optical switch, shutter/shutter stabilization, micro-scanning, wafer testing, astronomy, focus positioning, laser cavity tuning, optical fiber coupling and deformation, FBG (fiber Bragg grating) deformation, chopper, interferometer, PDP crystal cutting, modulator, etc.
- Mechanics: fiber stretching, tool positioning, pick and place tools, diamond turning, elliptical piston processing, damping, dynamic control, new generation ultrasonic or sonic vibration, NDT, instrument fatigue monitoring, etc.
- Fluidics: proportional valves, pumps, flow measurement technology, inkjet technology, syringes, droplet generators, etc.

Application Example

Product List

Туре	Appearance	Mechanism	Axis	Displacement[µm]	Blocking force[N]	Driving voltage[V]	Page
A		Magnifying mechanism	Contract in X	41~410	27~500	0~120	2
			Contract in X	30~2000	6~540	0~120	4
R			Expand in X	43~560	48~100	0~120	2
P87.X38S			х	38	-	0~150	7
AP			Expand in X	110~830	6~90	0~150	8
NAC	and the second s		Expand in X	300~950	250	0~200	9

Amplified Piezo Actuators

The amplified piezo actuator is an actuator that amplifies and outputs the displacement generated by low-voltage piezo stacks preloaded by a mechanical amplifying structure.

The amplified structure is an mechanical shell, and its material is generally steel. In addition to providing optimized pre-tightening force for piezo stacks, it also protects piezo stacks from tensile forces that can cause irreversible or even fatal damage to piezo stacks. The mechanical amplified structure also provides the user with mechanical interface, easy to integrate.

Principle

Piezo stacks produce deformation and displacement along the main axis, that is, the long axis direction, and the elliptical mechanical structure amplifies and outputs the displacement along the short axis direction.

Recommended Controller

Voltage vs Stroke

Technical Data

	Туре	Max/stroke [µm]±15%*	Blocking force [N]	Stiffness [N/µm]±20%	El. capacitance [µF]±20%	Unloaded resonant frequency [Hz]±20%
	40A5	41/32	125	6.2	1.8	4100
	60A5	66/48	80	1.7	1.8	2700
	100A5	100/80	120	2.1	3.6	1900
Туре А	100A7	100/80	148	1.2	7.2	2000
	19071	100/80	500	5	10.8	1600
	150A5	157/120	65	0.7	3.6	1300
	200A5	217/160	40	0.4	3.6	800
	400A5	410/320	27	0.1	3.6	500
Type R	40R5	43/32	48	1.5	1.8	1300
	150R5	155/110	60	0.5	3.6	400
	500R7	560/400	100	0.25	10.8	230

*Nominal Stroke at 0~150V, Max. stroke at -20~150V. Recommended voltage 0~120V for long-term and high-reliable operation.

Drawings

100A7

150A5

200A5

19071

400A5

150R5

Amplified Piezo Actuator

Blocking force to 540N

Characteristics

• 30µm to 2mm travel

• Unloaded resonant frequency to 3150Hz

Nanoscale resolution

Application

Probe scanning, optical mirrors positioning, optical switch, shutter, wafer testing, astronomy, focus positioning, laser cavity tuning, fiber coupling and deformation, FBG deformation, chopper, interferometer, piston machining, damping, dynamic control, valves, inkjet technology, droplet generators, etc.

Technical Data

Туре	Active axes	Stroke [µm±20%]	Unloaded resonant frequency[Hz±20%]	Blocking force [N]	Stiffness [N/µm±20%]	El. capacitance [µF±20%]	Material
30A2	Х	30	3150	6	0.2	0.075	steel
35A2	Х	35	1900	9	0.26	0.17	steel
50A2	Х	50	2000	7	0.14	0.125	steel
70A5	Х	70	900	49	0.7	1.8	steel
80A5	Х	80	700	32	0.4	1.8	steel
95A10	Х	95	350	540	5.7	21.6	steel
115A10	Х	115	1050	253	2.2	21.6	steel
120A14	Х	120	400	54	0.45	29	steel
125A5	Х	125	1150	25	0.2	3.6	steel
130A5	Х	130	900	7.8	0.06	1.8	steel
180A5	Х	180	750	18	0.1	3.6	steel
200A10	Х	200	600	60	0.3	21.6	steel
230A10	Х	230	580	230	1	43	steel
240A5	Х	240	600	12	0.05	3.6	steel
300A10	Х	300	423	53	0.17	21.6	steel
400A7	Х	400	370	25	0.06	10.8	steel
450A5	Х	450	394	12	0.026	3.6	steel
500A10	Х	500	188	20	0.042	43.2	steel
550A14	Х	550	243	136	0.25	130	steel
600A7	Х	600	190	3	0.005	7.2	steel
700A7	Х	700	280	14	0.02	10.8	steel
800A7	Х	800	220	5	0.006	7.2	steel
900A10	Х	900	250	60	0.07	43	steel
1000A14	Х	1000	200	130	0.13	130	steel
1500A10	Х	1500	150	30	0.02	43	steel
2000A10	Х	2000	110	20	0.01	43	steel

Note: Stroke at 0~150V, max driving voltage of -20V~150V. Recommended voltage 0~120V for long-term and high-reliable operation.

Drawings

6

M1.2 ∓0.6

M1.2 ∓ 0.7

M1.2 ∓ 0.7

<u>M2 ∓ 2.1</u>

<u>M2.5 ∓1.6</u>

115A10

120A14

-

52

---- o

5.4

<u>M3∓3.9</u>/

180A5

Piezo · Nano · Motion

Drawings

<u>_____</u> 53.2 <u>M2.5¥2</u> 7_____

450A5

17 8

13

<u>+ - <u>-</u> - 2</u>

<u>M5⊽5</u>

8 []

8

P87 Amplified Piezo Actuators

P87 amplified piezo actuator is specially designed for space-limited applications. It is compact, small size, and equipped with closed-loop sensors. It is ideal for high-precision, space-limited applications, such as small-volume fiber end-face detectors.

Characteristics

 Displacement to 38µm 	 Closed-loop sensor 	 Small size 	 Suitable for fiber end detection

Technical Data

Туре	P87.X38S	Units	
Travel range	38	μm±10%	
Driving voltage	0~150	V	
Sensor	SGS		
Closed-loop resolution	1.3	nm(5mV ripple)	
Unload resonant frequency	1200	Hz±20%	
Capacitance	0.8	μF±20%	
Material	stainless steel, aluminium		

*Nominal Stroke at 0~150V, Max. stroke at -20~150V. Recommended voltage 0~120V for long-term and high-reliable operation.

Drawing

P87.X38S

Recommended Controllers

E00/E01	E70	E53			
	V ·- ·· • •	THE REAL			
1~3 channels	3 channels	1 channel			
Digital analog	Digital analog	Digital analog			
Open/closed loop	Open/closed loop	Open/closed loop			
Ave. current:291mA/58mA	Ave. current:70mA	Ave. current:60mA			
Note: Please see "Piezo Controller" for detailed information					

- 7 -

AP Piezo Amplified Actuator

AP piezoelectric displacement actuator, which adopts advanced flexure mechanism and high performance electric ceramic stack, can provide a very large range of motion, fast response. Its resolution can reach the sub-nanometer level. The double-hinge flexure mechanism has higher rigidity, mechanical efficiency and resonance frequency. The double hinge flexure design also makes the size more compact. The product parameters can be customized. The applications of AP piezoelectric displacement actuators include nanopositioning, biomedicine, microscope, precision machining, vibration control, high-speed valve, optics, etc.

Technical Data

Туре	Max./stroke [µm]±20%	Blocking force[N]	Unloaded resonant frequency[Hz]±20%	Stiffness [N/µm]±20%	El. capacitance [nF]±20%
AP120	>120/110	11	900	0.10	400
AP350B	>350/320	6	400	0.019	900
AP340	>340/310	16	460	0.052	780
AP350	>350/320	18	480	0.057	900
AP830	>830/750	90	230	0.12	8300

Note: The maximum stroke is under -15V~150V, and the nominal stroke is under 0~150V. When used to drive the spring, the displacement range is reduced to $K_a/(K_a+K_L)$, where K_a is stiffness of the piezoelectric ceramic and K_L is that of load.

Drive Current Calculation

The required current I=CdV/dt, where I is the current, C is the effective capacitance, dV/dt is the change in voltage. For a sine wave, the required peak current $I_p=\pi fCV_{p,p}$ Where $V_{p,p}$ is the peak voltage. When using triangular wave drive, the required peak current is $I_p=2CfV_{p,p}$.

Capacitance

The capacitance of the actuator is measured at small signal and room temperature. Due to the hysteresis, the effective capacitance increases with the applied voltage. When working at full amplitude, the effective capacitance is approximately twice that of the small-signal capacitance. The capacitance also increases with increasing temperature, and a temperature increase of about 50°C will double the effective capacitance.

Installation and Movement Direction

You can mount AP piezo amplified actuators by threaded hole in a single-ended or non-fixed configuration. When power is applied, proportional expansion occurs in the vertical direction, as shown below.

Drawings

4-M2

NAC Piezo Amplified Actuators

NAC piezo amplified actuators are very suitable for systems that require lighter actuators with temperature stability and high resonance frequencies. The unique structure makes the actuator more compact.

Characteristics

· High resonance frequency and thus large operating bandwidth

· Light weight, optimized rigidity

Temperature stability

Temperature Stability

Generally, when the temperature changes, the different thermal expansion between the ceramic and the material of the structural component will result in a change in the force distribution. This will result in a change in internal preload. However, the NAC piezo amplified actuators will not cause changes in output displacement due to changes in temperature.

Drawing

Note: Because H2>H1 of NAC2645, the middle position of the lower end must be suspended during installation, otherwise the displacement output will be blocked

Principle

NAC piezo amplified actuators are based on four piezo stacks, in pairs connection. Each piezo stack is hinged at its end at a small angle. When the voltage applied to one pair of piezo stacks increases, the other pair voltage on the piezo stack decreases. This facilitates the movement of the output member in one direction. Be aware that in the case of free displacement, the tension in the piezo stack and the tension member remain almost constant. This means that the strain is directly derived from the piezo stack to the output. In addition, the structure will not withstand high bending forces, because it is not easy to fatigue.

Output component Piezoelectric ceramic stack

Warning: Avoid putting extra pressure on the actuator, for example:

· Push/pull and bend between two points of the fixed interface

· Lateral force and bend on the moving surface

Load Capacity Curve

Stroke vs Voltage

Technical Data

Туре	NAC2641	NAC2643	NAC2645	Unit
Wide W×Leight L	14×70.5	14×102.4	14×134.2	mm±0.1
Height H1/H2	26.1/24.2	28/24.2	29.5/30.6	mm±0.3
Operating voltage	200	200	200	V
Displacement	±150	±312.5	±475	µm±15%
Stiffness(in the middle position, up to 250N)	1.3	0.9	0.7	N/µm±15%
Blocking force	250	250	250	Ν
Mass (mechanism + lead)	84+60	122+60	160+60	g±10%
Unloaded resonant frequency	1700	1100	850	Hz
El. capacitance	2×3.6	2×6.5	2×10	μF±15%
Operating temperature	-20~+150	-20~+150	-20~+150	°C

Note: Specified for room temperature and static operating.

Challenge the Limits of Nano Motion and Control Technology...

Harbin Core Tomorrow Science & Technology Co., Ltd. Tel:+86-451-86268790 +86-18944636468 Fax:0451-86267847 Postcode:150086 Email:info@coremorrow.com Web:www.coremorrow.com Address:Building I2, No.191 Xuefu Road, Nangang District, Harbin

Wechat

СТО